Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Elife ; 112022 06 06.
Article in English | MEDLINE | ID: covidwho-1934562

ABSTRACT

COVID-19 is a disease of dysfunctional immune responses, but the mechanisms triggering immunopathogenesis are not established. The functional plasticity of macrophages allows this cell type to promote pathogen elimination and inflammation or suppress inflammation and promote tissue remodeling and injury repair. During an infection, the clearance of dead and dying cells, a process named efferocytosis, can modulate the interplay between these contrasting functions. Here, we show that engulfment of SARS-CoV-2-infected apoptotic cells exacerbates inflammatory cytokine production, inhibits the expression of efferocytic receptors, and impairs continual efferocytosis by macrophages. We also provide evidence supporting that lung monocytes and macrophages from severe COVID-19 patients have compromised efferocytic capacity. Our findings reveal that dysfunctional efferocytosis of SARS-CoV-2-infected cell corpses suppresses macrophage anti-inflammation and efficient tissue repair programs and provides mechanistic insights for the excessive production of pro-inflammatory cytokines and accumulation of tissue damage associated with COVID-19 immunopathogenesis.


Subject(s)
COVID-19 , SARS-CoV-2 , Anti-Inflammatory Agents/pharmacology , Apoptosis , Humans , Macrophages/metabolism , Phagocytosis
2.
Arq Gastroenterol ; 59(2): 170-176, 2022.
Article in English | MEDLINE | ID: covidwho-1933431

ABSTRACT

BACKGROUND: Data related to SARS-CoV-2 exposure rates in patients with inflammatory bowel diseases (IBD) are scarce. Objective - Our aim was to determine the prevalence of serological markers of SARS-Cov-2 and the predictive factors for positivity in patients with IBD. METHODS: This is a cross-sectional, observational study carried out from May to September 2020. SARS-CoV-2 serological markers were determined using chemiluminescence immunoassay in 233 IBD patients without evidence of COVID-19 symptoms. Patient age was 36.6±11.1 years, 118 patients were male (50.6%), and 63.1% had Crohn's disease. Patient clinical data were extracted from individual electronic medical records and complemented by a structured interview. RESULTS: Twenty-six out of the 233 patients with IBD had positive serum markers for SARS-CoV-2 (11.2%). Female sex (P<0.003), extra-intestinal manifestations (P=0.004), use of corticosteroids (P=0.049), and previous contact with individuals with flu-like symptoms (P<0.001) or confirmed diagnosis of COVID-19 (P<0.001), were associated with a significant increased rate of positive SARS-Cov-2 serological markers. No significant difference was observed regarding to adherence to protection measures and positivity of SARS-Cov-2 serological markers (P>0.05). CONCLUSION: SARS-CoV-2 previous infection in IBD patients was not that uncommon, and its prevalence was 11.2% in our series. Positivity to SARS-CoV-2 serological markers was associated with female sex, extra-intestinal manifestations, use of corticosteroids, and contact with individuals with suspected or confirmed COVID-19. Studies with longer follow-up periods are needed to confirm these findings.


Subject(s)
COVID-19 , Inflammatory Bowel Diseases , Adult , Biomarkers , COVID-19/epidemiology , Chronic Disease , Cross-Sectional Studies , Female , Humans , Inflammatory Bowel Diseases/epidemiology , Male , Middle Aged , Prevalence , Referral and Consultation , SARS-CoV-2
3.
Crit Care ; 26(1): 206, 2022 07 07.
Article in English | MEDLINE | ID: covidwho-1923570

ABSTRACT

BACKGROUND: The release of neutrophil extracellular traps (NETs) is associated with inflammation, coagulopathy, and organ damage found in severe cases of COVID-19. However, the molecular mechanisms underlying the release of NETs in COVID-19 remain unclear. OBJECTIVES: We aim to investigate the role of the Gasdermin-D (GSDMD) pathway on NETs release and the development of organ damage during COVID-19. METHODS: We performed a single-cell transcriptome analysis in public data of bronchoalveolar lavage. Then, we enrolled 63 hospitalized patients with moderate and severe COVID-19. We analyze in blood and lung tissue samples the expression of GSDMD, presence of NETs, and signaling pathways upstreaming. Furthermore, we analyzed the treatment with disulfiram in a mouse model of SARS-CoV-2 infection. RESULTS: We found that the SARS-CoV-2 virus directly activates the pore-forming protein GSDMD that triggers NET production and organ damage in COVID-19. Single-cell transcriptome analysis revealed that the expression of GSDMD and inflammasome-related genes were increased in COVID-19 patients. High expression of active GSDMD associated with NETs structures was found in the lung tissue of COVID-19 patients. Furthermore, we showed that activation of GSDMD in neutrophils requires active caspase1/4 and live SARS-CoV-2, which infects neutrophils. In a mouse model of SARS-CoV-2 infection, the treatment with disulfiram inhibited NETs release and reduced organ damage. CONCLUSION: These results demonstrated that GSDMD-dependent NETosis plays a critical role in COVID-19 immunopathology and suggests GSDMD as a novel potential target for improving the COVID-19 therapeutic strategy.


Subject(s)
COVID-19 Drug Treatment , Extracellular Traps , Animals , Disulfiram/metabolism , Extracellular Traps/metabolism , Mice , Neutrophils/metabolism , SARS-CoV-2
4.
J Mol Cell Biol ; 14(4)2022 08 17.
Article in English | MEDLINE | ID: covidwho-1806451

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a hyperinflammatory state and lymphocytopenia, a hallmark that appears as both signature and prognosis of disease severity outcome. Although cytokine storm and a sustained inflammatory state are commonly associated with immune cell depletion, it is still unclear whether direct SARS-CoV-2 infection of immune cells could also play a role in this scenario by harboring viral replication. We found that monocytes, as well as both B and T lymphocytes, were susceptible to SARS-CoV-2 infection in vitro, accumulating double-stranded RNA consistent with viral RNA replication and ultimately leading to expressive T cell apoptosis. In addition, flow cytometry and immunofluorescence analysis revealed that SARS-CoV-2 was frequently detected in monocytes and B lymphocytes from coronavirus disease 2019 (COVID-19) patients. The rates of SARS-CoV-2-infected monocytes in peripheral blood mononuclear cells from COVID-19 patients increased over time from symptom onset, with SARS-CoV-2-positive monocytes, B cells, and CD4+ T lymphocytes also detected in postmortem lung tissue. These results indicated that SARS-CoV-2 infection of blood-circulating leukocytes in COVID-19 patients might have important implications for disease pathogenesis and progression, immune dysfunction, and virus spread within the host.


Subject(s)
COVID-19 , SARS-CoV-2 , Cytokine Release Syndrome , Humans , Leukocytes, Mononuclear , Monocytes
5.
Emerg Infect Dis ; 28(3): 730-733, 2022 03.
Article in English | MEDLINE | ID: covidwho-1674278

ABSTRACT

We conducted a prospective cohort study in a population with diverse ethnic backgrounds from Brazil to assess clinically meaningful symptoms after surviving coronavirus disease. For most of the 175 patients in the study, clinically meaningful symptoms, including fatigue, dyspnea, cough, headache, and muscle weakness, persisted for >120 days after disease onset.


Subject(s)
COVID-19 , Brazil/epidemiology , Humans , Prospective Studies , SARS-CoV-2 , Survivors
6.
Biomed Pharmacother ; 142: 112067, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1363885

ABSTRACT

Respiratory symptoms are one of COVID-19 manifestations, and the metalloproteinases (MMPs) have essential roles in the lung physiology. We sought to characterize the plasmatic levels of matrix metalloproteinase-2 and 9 (MMP-2 and MMP-9) in patients with severe COVID-19 and to investigate an association between plasma MMP-2 and MMP-9 levels and clinical outcomes and mortality. MMP-2 and MMP-9 levels in plasma from patients with COVID-19 treated in the ICU (COVID-19 group) and Control patients were measured with the zymography. The study groups were matched for age, sex, hypertension, diabetes, BMI, and obesity profile. MMP-2 levels were lower and MMP-9 levels were higher in a COVID-19 group (p < 0.0001) compared to Controls. MMP-9 levels in COVID-19 patients were not affected by comorbidity such as hypertension or obesity. MMP-2 levels were affected by hypertension (p < 0.05), but unaffected by obesity status. Notably, hypertensive COVID-19 patients had higher MMP-2 levels compared to the non-hypertensive COVID-19 group, albeit still lower than Controls (p < 0.05). No association between MMP-2 and MMP-9 plasmatic levels and corticosteroid treatment or acute kidney injury was found in COVID-19 patients. The survival analysis showed that COVID-19 mortality was associated with increased MMP-2 and MMP-9 levels. Age, hypertension, BMI, and MMP-2 and MMP-9 were better predictors of mortality during hospitalization than SAPS3 and SOFA scores at hospital admission. In conclusion, a significant association between MMP-2 and MMP-9 levels and COVID-19 was found. Notably, MMP-2 and MMP-9 levels predicted the risk of in-hospital death suggesting possible pathophysiologic and prognostic roles.


Subject(s)
COVID-19 , Hospital Mortality , Hypertension , Intensive Care Units/statistics & numerical data , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Age Factors , Body Mass Index , Brazil/epidemiology , COVID-19/blood , COVID-19/diagnosis , COVID-19/mortality , COVID-19/physiopathology , Female , Humans , Hypertension/diagnosis , Hypertension/epidemiology , Male , Matrix Metalloproteinase 2/analysis , Matrix Metalloproteinase 2/blood , Matrix Metalloproteinase 9/analysis , Matrix Metalloproteinase 9/blood , Middle Aged , Mortality , Predictive Value of Tests , Prognosis , Risk Factors , SARS-CoV-2 , Severity of Illness Index
7.
Rev Soc Bras Med Trop ; 54: e02102021, 2021.
Article in English | MEDLINE | ID: covidwho-1299354

ABSTRACT

INTRODUCTION: This epidemiological household survey aimed to estimate the prevalence of the current and past SARS-CoV-2 infections in Ribeirão Preto, a municipality of southeast Brazil. METHODS: The survey was conducted in two phases using a clustered sampling scheme. The first phase spanned May 1-3 and involved 709 participants. The second phase spanned June 11-14, 2020, and involved 646 participants. RESULTS: During the first phase, RT-PCR performed on nasopharyngeal swabs was positive at 0.14%. The serological tests were positive in 1.27% of the patients during the first phase and 2.79% during the second phase. People living in households with more than five members had a prevalence of 10.83% (95%CI: 1.58-74.27) higher than those living alone or with someone other. Considering the proportion of the positive serological test results with sex and age adjustments, approximately 2.37% (95%CI: 1.32-3.42) of the population had been cumulatively infected by mid-June 2020, which is equivalent to 16,670 people (95%CI: 9,267-24,074). Considering that 68 deaths from the disease in the residents of the city had been confirmed as at the date of the second phase of the survey, the infection fatality rate was estimated to be 0.41% (95%CI: 0.28-0.73). Our results suggest that approximately 88% of the cases of SARS-CoV-2 infection at the time of the survey were not reported to the local epidemiological surveillance service. CONCLUSIONS: The findings of this study provide in-depth knowledge of the COVID-19 pandemic in Brazil and are helpful for the preventive and decision-making policies of public managers.


Subject(s)
COVID-19 , SARS-CoV-2 , Brazil/epidemiology , Humans , Pandemics , Prevalence
8.
RMD Open ; 7(1)2021 02.
Article in English | MEDLINE | ID: covidwho-1066938

ABSTRACT

OBJECTIVE: To evaluate whether the addition of colchicine to standard treatment for COVID-19 results in better outcomes. DESIGN: We present the results of a randomised, double-blinded, placebo-controlled clinical trial of colchicine for the treatment of moderate to severe COVID-19, with 75 patients allocated 1:1 from 11 April to 30 August 2020. Colchicine regimen was 0.5 mg thrice daily for 5 days, then 0.5 mg twice daily for 5 days. The primary endpoints were the need for supplemental oxygen, time of hospitalisation, need for admission and length of stay in intensive care unit and death rate. RESULTS: Seventy-two patients (36 for placebo and 36 for colchicine) completed the study. Median (and IQR) time of need for supplemental oxygen was 4.0 (2.0-6.0) days for the colchicine group and 6.5 (4.0-9.0) days for the placebo group (p<0.001). Median (IQR) time of hospitalisation was 7.0 (5.0-9.0) days for the colchicine group and 9.0 (7.0-12.0) days for the placebo group (p=0.003). At day 2, 67% versus 86% of patients maintained the need for supplemental oxygen, while at day 7, the values were 9% versus 42%, in the colchicine and the placebo groups, respectively (log rank; p=0.001). Two patients died, both in placebo group. Diarrhoea was more frequent in the colchicine group (p=0.26). CONCLUSION: Colchicine reduced the length of both, supplemental oxygen therapy and hospitalisation. The drug was safe and well tolerated. Once death was an uncommon event, it is not possible to ensure that colchicine reduced mortality of COVID-19. TRIAL REGISTRATION NUMBER: RBR-8jyhxh.


Subject(s)
COVID-19 Drug Treatment , Colchicine/administration & dosage , Length of Stay , Oxygen Inhalation Therapy , SARS-CoV-2/genetics , Severity of Illness Index , Adult , Aged , COVID-19/mortality , COVID-19/virology , Colchicine/adverse effects , Diarrhea/chemically induced , Double-Blind Method , Female , Humans , Intensive Care Units , Male , Middle Aged , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Treatment Outcome
9.
J Exp Med ; 218(3)2021 03 01.
Article in English | MEDLINE | ID: covidwho-968998

ABSTRACT

Severe cases of COVID-19 are characterized by a strong inflammatory process that may ultimately lead to organ failure and patient death. The NLRP3 inflammasome is a molecular platform that promotes inflammation via cleavage and activation of key inflammatory molecules including active caspase-1 (Casp1p20), IL-1ß, and IL-18. Although participation of the inflammasome in COVID-19 has been highly speculated, the inflammasome activation and participation in the outcome of the disease are unknown. Here we demonstrate that the NLRP3 inflammasome is activated in response to SARS-CoV-2 infection and is active in COVID-19 patients. Studying moderate and severe COVID-19 patients, we found active NLRP3 inflammasome in PBMCs and tissues of postmortem patients upon autopsy. Inflammasome-derived products such as Casp1p20 and IL-18 in the sera correlated with the markers of COVID-19 severity, including IL-6 and LDH. Moreover, higher levels of IL-18 and Casp1p20 are associated with disease severity and poor clinical outcome. Our results suggest that inflammasomes participate in the pathophysiology of the disease, indicating that these platforms might be a marker of disease severity and a potential therapeutic target for COVID-19.


Subject(s)
COVID-19/pathology , COVID-19/virology , Inflammasomes/metabolism , SARS-CoV-2/physiology , Severity of Illness Index , Apoptosis , Comorbidity , Cytokines/biosynthesis , Humans , Lung/pathology , Monocytes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Postmortem Changes , Treatment Outcome
10.
J Exp Med ; 217(12)2020 12 07.
Article in English | MEDLINE | ID: covidwho-759876

ABSTRACT

Severe COVID-19 patients develop acute respiratory distress syndrome that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that neutrophil extracellular traps (NETs) have been described as important mediators of tissue damage in inflammatory diseases, we investigated whether NETs would be involved in COVID-19 pathophysiology. A cohort of 32 hospitalized patients with a confirmed diagnosis of COVID-19 and healthy controls were enrolled. The concentration of NETs was augmented in plasma, tracheal aspirate, and lung autopsies tissues from COVID-19 patients, and their neutrophils released higher levels of NETs. Notably, we found that viable SARS-CoV-2 can directly induce the release of NETs by healthy neutrophils. Mechanistically, NETs triggered by SARS-CoV-2 depend on angiotensin-converting enzyme 2, serine protease, virus replication, and PAD-4. Finally, NETs released by SARS-CoV-2-activated neutrophils promote lung epithelial cell death in vitro. These results unravel a possible detrimental role of NETs in the pathophysiology of COVID-19. Therefore, the inhibition of NETs represents a potential therapeutic target for COVID-19.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Extracellular Traps/physiology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , A549 Cells , Adult , Angiotensin-Converting Enzyme 2 , COVID-19 , Cell Death , Coronavirus Infections/blood , Coronavirus Infections/pathology , Epithelial Cells/pathology , Epithelial Cells/virology , Female , HeLa Cells , Humans , Male , Neutrophil Activation , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/blood , Pneumonia, Viral/pathology , SARS-CoV-2 , Serine Proteases/metabolism , Suction , Trachea/immunology
SELECTION OF CITATIONS
SEARCH DETAIL